
To many Java developers, the JVM you use is a

given – you build your application on the Java

environment that works with your app server or

framework and OS. If the app runs into trouble,

you look within your organization for a JVM

specialist, re-tune the JVM, and hope for the

best. That’s how Java developers have been

(mostly) successful for 20 years.

Nobody disputes the power and flexibility of

Java; it is the enterprise standard worldwide for

a reason. However, Java’s memory management

is arguably both the best and the worst thing

about the language. On the plus side, Java

developers can ignore a huge class of

programming errors that keep users of other

languages up nights, or that can show up

months or even years later in supposedly clean

production code. But there’s a downside to the

garbage collection (GC) technology that makes

Java developers so productive: a lack of

consistency and predictability in application

performance, a problem that only gets worse as

an application’s memory space grows.

Taming the Memory Management Monster

Like most GC implementations, Java’s memory

management waits in the background as

applications create new objects.

Eventually a threshold is reached and Java’s GC

leaps into action, identifying objects that are still

in use and reclaiming space held by unused

“dead” objects. Having cleared up lots of space,

the GC waits in the background until it is needed

again.

The performance problems come from the

monolithic nature of some of Java’s GC

operations and the need to freeze application

execution until those operations complete. The

bigger the memory and the more objects that

need to be scanned, the longer the application

freezes. Even a moderate sized Java heap of a

few gigabytes of memory can produce

measurable delays due to garbage collection, on

top of the application’s normal processing time.

Application freezes due to GC are a fact of life for

Java applications. Building time critical

applications is that much harder when you have

to worry about unpredictable delays, whether

you’re working with ecommerce transactions

measured in small numbers of seconds or low

latency processing in handfuls of microseconds.

The best most Java developers can do is either

trade off frequent small freezes against less

regular but longer ones or try to push the freezes

far enough into the future that they become

somebody else’s problem.

WHAT DO ZING INNOVATIONS MEAN FOR DEVELOPERS?

• Smooth, predictable, pauseless operation

• Fit all your critical data in memory at once
• No need for specialized frameworks to ensure

predictable application behavior

• Faster launch times with reduced need for JVM tuning
• Minimize the need for 3rd-party APIs and off-heap

data stores

• Zing is a JVM that ships as part of a complete JDK

• Zing is transparent to your application– you can even
build using any JVM, then deploy on Zing

• Zing ReadyNow! technology solves Java warm-up
problems for good, giving developers more control over
Java compilation and allowing optimizations to be
saved and reused across runs

What can Zing® , do for my project?

Zing: The Kinder, Gentler
Memory Manager

Azul’s Zing doesn’t merely hide application freezes or

reduce their occurrence; it eliminates them completely.

Zing offers the only true concurrent memory manager,

one that permits the GC and the application to run at

the same time, not just most of the time but 100% of

the time. Zing removes GC freezes and provides

smooth, consistent application performance as Java’s

memory footprint grows from a few gigabytes of

memory to terabytes. Transactional applications can

count on predictable response. Low latency processing

in Java becomes a practical reality. And applications can

benefit from large in-memory data, without having to

deal with the negative effects of managing all that

extra memory.

Zing supports X86-64 systems all major Linux

distributions, including Red Hat, SLES, Ubuntu, Debian,

Amazon Linux, Oracle Linux and CentOS, including

Docker and Linux containers and both VMware and

KVM. For more on Zing: www.azul.com/zing

Find Out More

Solve Java Warm-Up problems with ReadyNow!

www.azul.com/readynow

Download Zing:

www.azul.com/zingtrial

Open Source Developer?

Request a free development copy by emailing us:

zing_oss@azul.com

Zing vs. Oracle’s HotSpot:

Independent test results of

Apache Lucene search transaction

times shown by percentile at 200

queries/sec against an in-memory

Wikipedia English-language index.

Both JVMs were configured with

78 GB of index data in 140 GB

Java heap.

Copyright © 2017 Azul Systems, Inc. 385 Moffett Park Drive, Suite 115, Sunnyvale, CA 94089 All rights reserved. Azul Systems, the Azul Systems logo, Zulu, Zing, and
ReadyNow! are registered trademarks of Azul Systems Inc. Java and OpenJDK are trademarks of Oracle Corporation and/or its affiliated companies in the United States
and other countries. Monotype is a trademark of Monotype Imaging Inc. registered in the United States Patent and Trademark Office and may be registered in certain
other jurisdictions. The Monotype logo is a trademark of Monotype Imaging Inc. and may be registered in certain jurisdictions. Other marks are the property of their
respective owners and are used here only for identification purposes. Products and specifications discussed in this document may reflect future versions and are
subject to change by Azul Systems without notice.

80

70

60

50

40

30

20

10

0
0% 90% 99% 99.9% 99.99% 99.999%

Service Level Agreement
25 Milliseconds Max

HotSpot JVM 15k Users

HotSot JVM 10k Users

HotSpot JVM 5k Users

Azul Zing 15k Users

Percentile

H
ic

cu
p

D
is

tri
bu

tio
n

(m
se

c)

™

https://www.azul.com/zing
https://www.azul.com/readynow
https://www.azul.com/zingtrial
mailto:zing_oss@azul.com

